首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Experiments on transport of hydrophobic particles and gas bubbles in porous media
Authors:Lior C Goldenberg  Ian Hutcheon  Norman Wardlaw
Institution:(1) The Department of Geology and Geophysics, The University of Calgary, T2N 1N4 Calgary, Alberta, Canada
Abstract:Adhesion of hydrophobic colloids (clay minerals) on the surface of bubbles of air and the transport of the composite units formed by bubbles and mineral particles were observed in a glass micro model.When a clay mineral suspension flowed in a porous medium that contained bubbles of air trapped in small pores, particles accumulated preferentially on the upstream portion of the bubbles, and quasi-stable bubble-mineral particle units were formed. With an increase in the flow velocity, the particles moved along the interface between the bubble and the liquid and accumulated on the downstream portion of the bubbles. A large stress could mobilize the units which, occasionally, accumulated in larger voids.The mechanism suggested is adhesion of the particles on the surface of the bubble due to compression of their diffuse electrical double layer. The adsorbed particles can be moved by shear stresses which act in the region of water molecules between the well-organized layers of water on the surfaces of the bubble and the clay particles. A large enough shear stress causes the bubbles to become more streamlined, allowing them to move in the channel system. If in contact, the common lamina of the bubbles can withdraw and rupture.Bubbles transport from 20 to 50 times more particles than can be transported by average suspension.
Keywords:Transport  accumulation  bubbles  clay minerals  adhesion
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号