首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Transient and steady-state nanoindentation creep of polymeric materials
Authors:Chien-Chao HuangMao-Kuo Wei  Sanboh Lee
Institution:a Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan
b Department of Materials Science and Engineering, National Dong Hwa University, Hualien, Taiwan
Abstract:The transient and steady-state nanoindentation creep of polymeric materials was investigated. The creep model is used to explain the experimental data of transient and steady-state creep dominated by viscoelastic deformation and power-law creep deformation, respectively. The Burgers viscoelastic model was used to interpret the transient creep in polymers under nano-indentation. Explicit expression for the displacement of transient creep was derived using the correspondence principle of linear viscoelasticity theory. The power law of strain rate-stress relation was used to explain the creep displacement during the steady state. Three polymers of poly(methyl methacrylate), hydroxyethyl methacrylate copolymer, and the fast-cure acrylic resin were used to measure the nanoindentation creep. The transient creep data are in good agreement with the predictions from the Burgers viscoelastic model. The creep displacement is mainly attributed to the viscous flow of the Kelvin element, and the computed values of viscosities (η1,cη2,c) increase with decreasing preloading rate. By comparing the steady-state creep data with the power law of strain rate-stress relation, the stress exponents for the above polymeric materials were quantitatively determined.
Keywords:Nanoindentation creep  Viscoelasticity  Power-law creep  Polymer
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号