首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Thermodynamics of the In|In+3 Electrode in HCl + InCl3 Solutions
Authors:Rabindra N Roy  Lakshmi N Roy  Darin Gregory  Kathleen Kuhler  Shahaf Ashkenazi  Stephanie Kiefer  Kenneth S Pitzer
Institution:1. Hoffman Department of Chemistry, Drury University, Springfield, MO, 65802, USA
Abstract:Electromotive force measurements have been made using the cell $$\mbox{In(s)}|\mbox{HCl }(m_{\mathrm{A}}),\mbox{InCl}_{3}(m_{\mathrm{B}}),\mbox{H}_{2}\mbox{O}|\mbox{AgCl, Ag}$$ in the ionic strength range of I=0.05, 0.1, 0.25, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0 mol?kg?1 at 25?°C. The value of E o, the standard potential of the In/In3+ electrode, has been determined at 25?°C. Our value of E o (?0.3371 V) at 25?°C obtained from our measurements is in good agreement with ?0.336 (Hakomori, J. Am. Chem. Soc. 52: 2372–2376, 1930) and ?0.3382 V (Covington et al., J. Chem. Soc. 4394–4401, 1963). The activity coefficients of InCl3 as well as Harned interaction coefficients have been determined at 25?°C for each of the experimental ionic strengths at ionic strength fractions of 0.1, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9 of HCl. Harned’s rule for the salt is obeyed at I=0.05,0.1 and 0.25 mol?kg?1 but the quadratic terms are needed for higher ionic strengths. These data, together with others for the activity coefficient of HCl in the same solutions, have been treated by the ion-interaction (Pitzer, Activity Coefficients in Electrolyte Solutions, CRC Press, 1991) equations in a previous publication.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号