首页 | 本学科首页   官方微博 | 高级检索  
     


Asymptotic analysis for a stochastic semidefinite programming
Abstract:Stochastic semidefinite programming (SSDP) is a new class of optimization problems with a wide variety of applications. In this article, asymptotic analysis results of sample average approximation estimator for SSDP are established. Asymptotic analysis result already existing for stochastic nonlinear programming is extended to SSDP, that is, the conditions ensuring the convergence in distribution of sample average approximation estimator for SSDP to a multivariate normal are obtained and the corresponding covariance matrix is described in a closed form.
Keywords:Stochastic semidefinite programming  Asymptotic analysis  Sample average approximation (SAA)  Convergence in distribution
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号