首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Introducing krypton NMR spectroscopy as a probe of void space in solids
Authors:Horton-Garcia Charlene F  Pavlovskaya Galina E  Meersmann Thomas
Institution:Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
Abstract:A wealth of information about porous materials and their void spaces has been obtained from the chemical shift data in (129)Xe NMR spectroscopy during the past decades. In this contribution, the only NMR active, stable krypton isotope (83)Kr (spin I = (9)/(2)) is explored as a novel probe for porous materials. It is demonstrated that (83)Kr NMR spectroscopy of nanoporous or microporous materials is feasible and straightforward despite the low gyromagnetic ratio and low abundance of the (83)Kr isotope. The (83)Kr line width in most of the studied cases is quadrupolar dominated and field-strength independent. A significant exception was found in calcium-exchanged zeolites where the field dependence of the line width indicates a distribution of isotropic chemical shifts that may be caused by long-range disorder in the zeolite structure. The (83)Kr chemical shifts observed in the investigated materials display a somewhat different behavior than that of their (129)Xe counterparts and should provide a great resource for the verification or refinement of current (129)Xe chemical shift theory. In contrast to xenon, krypton with its smaller atomic radius has been demonstrated to easily penetrate the porous framework of NaA. Chemical shifts and line widths of (83)Kr are moderately dependent on small fluctuations in the krypton loading but differ strongly between some of the studied samples.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号