首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Computational study of the chemistry of 3-phenylpropyl radicals
Authors:Modglin James D  Dunham Jason C  Gibson Chad W  Lin Ching Yeh  Coote Michelle L  Poole James S
Institution:Department of Chemistry, Ball State University, Muncie, Indiana 47306, USA.
Abstract:Density functional theory (DFT) and G3-type (G3(MP2)-RAD) composite calculations were performed on a series of substituted 3-phenylpropyl radicals, to determine the relative importance of fragmentation and cyclization reactions in the chemistry of such species. Our studies indicate that cyclization is generally the more important of these reactions, with exceptions where fragmentation yields highly stabilized benzylic species. The energetic barriers for the cyclization reactions (enthalpies of activation) were found to be determined largely by the stability of the reactant radical and to a lesser but significant extent, by steric factors. Polarity effects in the transition state (modeled by SOMO-LUMO gaps of the products) appear to be less important. The data obtained indicated that the addition of benzyl radical to alkenes may be considered to be irreversible, but calculations for α-substituted styrenic systems indicate that reversibility of addition may become a factor in dilute polymerizing solutions for select systems.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号