首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Intramolecular Hydrogen Bonding in Calix[4]arene-Based Nitroxide Monoradical and Biradical as Studied by CW-ESR and Pulse-ESR HYSCORE Spectroscopy
Authors:Takatoshi Sawai  Kazunobu Sato  Daisuke Shiomi  Kazuo Toyota  Qi Wang  Jia-Song Wang  Yong Li  Guo-Shi Wu  Takeji Takui
Institution:1. Departments of Chemistry and Materials Science, Graduate School of Science, Osaka City University, Sugimoto 3-3-138, Sumiyoshi-ku, Osaka, 558-8585, Japan
2. Department of Chemistry, Tsinghua University, 100084, Beijing, China
Abstract:A calix4]arene-based biradical with two tert-butyl nitroxide radicals and a monoradical derived from the biradical have been studied by continuous-wave electron spin resonance (CW-ESR) and pulse-ESR-based hyperfine sublevel correlation (HYSCORE) spectroscopy. The two nitroxide radical sites antiferromagnetically interact with each other, generating a thermally accessible triplet state located 4?cm?1 above the singlet ground state. The present fine-structure and hyperfine spectral simulation for the spin Hamiltonian parameters of the biradical is sensitive to the local molecular structure at the spin-bearing site, illustrating a salient electronic structure of the radical sites with the ??-orbitals on the nitrogen (and oxygen) atoms cross-facing each other. The derived structure contrasts with the molecular structure determined by an X-ray crystal analysis for the hydroxylamine precursor of the biradical. The distance between the two midpoints of the nitrogen?Coxygen bonds at the radical sites is by 0.234?nm longer than the one (=0.314?nm) of the two hydroxyl groups of the precursor determined by the X-ray analysis. The lack of intramolecular hydrogen bonds between the nitrogen and hydrogen of the hydroxyl groups, caused by the oxidation of the hydroxyamino precursor, gives rise to such a sizable increase in the distance between the radical sites. The HYSCORE experiments gave a direct evidence of the local molecular structure of the radical site of the partially oxidized monoradical. The experimentally derived molecular structures of both the bi-, monoradicals and the precursor are in good agreement with those obtained by density functional theory calculations.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号