首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Compensation of the siphoning effect in nonaqueous capillary electrophoresis by vial lifting
Authors:Jussila M  Palonen S  Porras S P  Riekkola M L
Institution:Department of Chemistry, University of Helsinki, Finland.
Abstract:Increasing the sample load in nonaqueous capillary electrophoresis through the use of wide-bore capillaries is a good way to scale up analytical separations to semipreparative level. However, obtaining high efficiency requires the use of special instrumentation to eliminate siphoning. When wide-bore capillaries are employed, relatively large solvent volumes are transported from inlet to outlet vial, and due to the difference in liquid levels a siphoning flow from outlet to inlet is established. Siphoning induces a deviation from the plug-like flow profile and adversely affects the separation efficiency. In this study the use of wide-bore capillaries in nonaqueous capillary electrophoresis was examined with compensation for siphoning by lifting of the inlet vial. The inlet vial is raised at a speed appropriate for maintaining equal levels of liquid in the inlet and outlet vials. The optimal lift rate was determined empirically from a series of runs in which the lift rate was varied. As well, a simple theoretical model was devised for the calculation of lift rates. The model was successfully applied for the 200 microm and 320 microm ID capillaries but for the 530 microm ID capillary the predicted optimal lift rate was too low. Evidently this was because the theory was unable to account for the effect of siphoning on the migration times. Three model compounds, bumetanide, furosemide and ethacrynic acid, were separated using an acetonitrile-ethanol mixture (50:50, v/v) with potassium acetate (1 mM) or ammonium acetate (5 mM) as electrolyte. Good separation of bumetadine and ethacrynic acid was obtained even with a 530 microm ID capillary when the lift rate was carefully optimized. Without elimination of siphoning the peaks would not have been detectable. The viscosities and electrical conductivities of the electrolyte solution measured at different temperatures showed that viscosity as well as conductivity decreased with increasing temperature. The temperature dependence of the conductivity was used to estimate the temperature inside the CE capillary.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号