首页 | 本学科首页   官方微博 | 高级检索  
     


Characterization of framework and extra-framework aluminum species in non-hydrated zeolites Y by 27Al spin-echo, high-speed MAS, and MQMAS NMR spectroscopy at B0 = 9.4 to 17.6 T
Authors:Jiao Jian  Kanellopoulos Johanna  Wang Wei  Ray Siddharth S  Foerster Hans  Freude Dieter  Hunger Michael
Affiliation:Institute of Chemical Technology, University of Stuttgart, 70550 Stuttgart, Germany.
Abstract:27Al spin-echo, high-speed MAS (nu(rot) = 30 kHz), and MQMAS NMR spectroscopy in magnetic fields of B0 = 9.4, 14.1, and 17.6 T were applied for the study of aluminum species at framework and extra-framework positions in non-hydrated zeolites Y. Non-hydrated gamma-Al2O3 and non-hydrated aluminum-exchanged zeolite Y (Al,Na-Y) and zeolite H,Na-Y were utilized as reference materials. The solid-state 27Al NMR spectra of steamed zeolite deH,Na-Y/81.5 were found to consist of four signals. The broad low-field signal is caused by a superposition of the signals of framework aluminum atoms in the vicinity of bridging hydroxyl protons and framework aluminum atoms compensated in their negative charge by aluminum cations (delta(iso) = 70 +/- 10 ppm, C(QCC) = 15.0 +/- 1.0 MHz). The second signal is due to a superposition of the signals of framework aluminum atoms compensated by sodium cations and tetrahedrally coordinated aluminum atoms in neutral extra-framework aluminum oxide clusters (delta(iso) = 65 +/- 5 ppm, C(QCC) = 8.0 +/- 0.5 MHz). The residual two signals were attributed to aluminum cations (delta(iso) = 35 +/- 5 ppm, C(QCC) = 7.5 +/- 0.5 MHz) and octahedrally coordinated aluminum atoms in neutral extra-framework aluminum oxide clusters (delta(iso) = 10 +/- 5 ppm, C(QCC) = 5.0 +/- 0.5 MHz). By chemical analysis and evaluating the relative solid-state 27Al NMR intensities of the different signals of aluminum species occurring in zeolite deH,Na-Y/81.5 in the non-hydrated state, the aluminum distribution in this material was determined.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号