首页 | 本学科首页   官方微博 | 高级检索  
     

多菌灵农药的激光拉曼光谱分析
引用本文:王晓彬,吴瑞梅,刘木华,张庐陵,蔺磊,严霖元. 多菌灵农药的激光拉曼光谱分析[J]. 光谱学与光谱分析, 2014, 34(6): 1566-1570. DOI: 10.3964/j.issn.1000-0593(2014)06-1566-05
作者姓名:王晓彬  吴瑞梅  刘木华  张庐陵  蔺磊  严霖元
作者单位:1. 江西农业大学工学院生物光电及应用重点实验室,江西 南昌 330045
2. 江苏大学农产品物理加工重点实验室,江苏 镇江 212013
基金项目:国家自然科学基金项目(31271612), 江西省自然科学基金项目(20122BAB204020), 江西省科技攻关项目(2011BDH80010), 江西省教育厅科技项目(GJJ13272)和江苏省农产品物理加工重点实验室开放项目(JAPP2012-3)资助
摘    要:实验采集多菌灵农药的固体和液体拉曼光谱信号,对固体的原始拉曼光谱信号进行小波去噪预处理,利用正交试验方法筛选小波去噪参数的最优组合。结果表明,采用db2小波基函数、分解层数为2、阈值方案选择为rigrsure、重调方式为sln时,去噪效果最好,信噪比为62.483。根据不同官能团的振动模式,对去噪后的拉曼光谱分3个波数段(1 400~2 000,700~1 400,200~700 cm-1)进行谱峰归属和分析,得到了多菌灵农药分子在不同波数范围内的特征振动模式,其中,在619,725,964,1 022,1 265,1 274和1 478 cm-1处的拉曼信号较强,可作为固体多菌灵农药的特征峰。从多菌灵农药的液体拉曼光谱中,找到了629,727,1 001,1 219,1 258和1 365 cm-1特征峰,这些特征峰跟固体多菌灵农药的特征峰基本吻合。研究结果可为拉曼光谱分析技术在食品及农产品中农药残留的快速筛选提供判别依据。

关 键 词:激光拉曼光谱  多菌灵农药  小波去噪  谱峰归属   
收稿时间:2013-07-31

Laser Raman Spectrum Analysis of Carbendazim Pesticide
WANG Xiao-bin;WU Rui-mei;LIU Mu-hua;ZHANG Lu-ling;LIN Lei;YAN Lin-yuan. Laser Raman Spectrum Analysis of Carbendazim Pesticide[J]. Spectroscopy and Spectral Analysis, 2014, 34(6): 1566-1570. DOI: 10.3964/j.issn.1000-0593(2014)06-1566-05
Authors:WANG Xiao-bin  WU Rui-mei  LIU Mu-hua  ZHANG Lu-ling  LIN Lei  YAN Lin-yuan
Affiliation:1. Optics-Electrics Application of Biomaterials Lab,College of Engineering,Jiangxi Agricultural University,Nanchang 330045,China2. Jiangsu Key Laboratory of Physical Processing of Agricultural Product,Jiangsu University,Zhenjiang 212013,China
Abstract:Raman signal of solid and liquid carbendazim pesticide was collected by laser Raman spectrometer. The acquired Raman spectrum signal of solid carbendazim was preprocessed by wavelet analysis method, and the optimal combination of wavelet denoising parameter was selected through mixed orthogonal test. The results showed that the best effect was got with signal to noise ratio (SNR) being 62.483 when db2 wavelet function was used, decomposition level was 2, the threshold option scheme was ‘rigrsure’ and reset mode was ‘sln’. According to the vibration mode of different functional groups, the de-noised Raman bands could be divided into 3 areas: 1 400~2 000, 700~1 400 and 200~700 cm-1. And the de-noised Raman bands were assigned with and analyzed. The characteristic vibrational modes were gained in different ranges of wavenumbers. Strong Raman signals were observed in the Raman spectrum at 619, 725, 964, 1 022, 1 265, 1 274 and 1 478 cm-1, respectively. These characteristic vibrational modes are characteristic Raman peaks of solid carbendazim pesticide. Find characteristic Raman peaks at 629, 727, 1 001, 1 219, 1 258 and 1 365 cm-1 in Raman spectrum signal of liquid carbendazim. These characteristic peaks were basically tallies with the solid carbendazim. The results can provide basis for the rapid screening of pesticide residue in food and agricultural products based on Raman spectrum.
Keywords:Laser Raman spectrum  Carbendazim pesticide  Wavelet denoising  Spectrum peak assignment
本文献已被 CNKI 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号