首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Exploring interacting holographic dark energy in a perturbed universe with parameterized post-Friedmann approach
Authors:Lu Feng  Yun-He Li  Fei Yu  Jing-Fei Zhang  Xin Zhang
Institution:1.Department of Physics, College of Sciences,Northeastern University,Shenyang,China;2.College of Sciences,Shenyang Aerospace University,Shenyang,China;3.Center for High Energy Physics,Peking University,Beijing,China
Abstract:The model of holographic dark energy in which dark energy interacts with dark matter is investigated in this paper. In particular, we consider the interacting holographic dark energy model in the context of a perturbed universe, which was never investigated in the literature. To avoid the large-scale instability problem in the interacting dark energy cosmology, we employ the generalized version of the parameterized post-Friedmann approach to treating the dark energy perturbations in the model. We use the current observational data to constrain the model. Since the cosmological perturbations are considered in the model, we can then employ the redshift-space distortions (RSD) measurements to constrain the model, in addition to the use of the measurements of expansion history, which has never been done in the literature. We find that, for both the cases with \(Q=\beta H\rho _\mathrm{c}\) and with \(Q=\beta H_0\rho _\mathrm{c}\), the interacting holographic dark energy model is more favored by the current data, compared to the holographic dark energy model without interaction. It is also found that, with the help of the RSD data, a positive coupling \(\beta \) can be detected at the \(2.95\sigma \) statistical significance for the case of \(Q=\beta H_0\rho _\mathrm{c}\).
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号