首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Understanding electron transfer across negatively-charged Aib oligopeptides
Authors:Improta Roberto  Antonello Sabrina  Formaggio Fernando  Maran Flavio  Rega Nadia  Barone Vincenzo
Institution:Dipartimento di Chimica, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia, 80126 Napoli, Italy.
Abstract:The physicochemical effects modulating the conformational behavior and the rate of intramolecular dissociative electron transfer in phthalimide-Aibn-peroxide peptides (n = 0-3) have been studied by an integrated density functional/continuum solvent model. We found that three different orientations of the phthalimide ring are possible, labeled Phihel, PhiC7, and PhipII. In the condensed phase, they are very close in energy when the system is neutral and short. When the peptide chain length increases and the system is negatively charged, Phihel becomes instead the most stable conformer. Our calculations confirm that the 3(10)-helix is the most stable secondary structure for the peptide bridge. However, upon charge injection in the phthalimide end of the phthalimide-Aib3-peroxide, the peptide bridge can adopt an alpha-helix conformation as well. The study of the dependence of the frontier orbitals on the length and on the conformation of the peptide bridge (in agreement with experimental indications) suggests that for n = 3 the process could be influenced by a 3(10) --> alpha-helix conformational transition of the peptide chain.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号