首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Bacterial quorum sensing and interference by naturally occurring biomimics
Authors:Diane McDougald  Scott A Rice  Staffan Kjelleberg
Institution:(1) The Centre for Marine Biofouling and Bio-Innovation, The University of New South Wales, Sydney, NSW, 2052, Australia;(2) The School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
Abstract:Bacteria are able to coordinate gene expression as a community through the secretion and detection of signalling molecules so that the members of the community can simultaneously express specific behaviours. This mechanism of regulation of behaviour appears to be a key trait for adaptation to specific environments and has been shown to regulate a variety of important phenotypes, from virulence factor production to biofilm formation to symbiosis related behaviours such as bioluminescence. The ability to communicate and communally regulate gene expression is hypothesised to have evolved as a way for organisms to delay expression of phenotypes until numerical supremacy is reached. For example, in the case of infection, if an invading microorganism were to express virulence factors too early, the host may be able to mount a successful defence and repel the invaders. There is growing evidence that bacterial quorum sensing (QS) systems are involved in cross-kingdom signalling with eukaryotic organisms and that eukaryotes are capable of actively responding to bacteria in their environment by detecting and acting upon the presence of these signalling molecules. Likewise, eukaryotes produce compounds that can interfere with QS systems in bacteria by acting as agonists or antagonists. An exciting new field of study, biomimetics, takes inspiration from nature’s models and attempts to design solutions to human problems, and biomimics of QS systems may be one such solution. This article presents the acylated homoserine lactone and autoinducer 2 QS systems in bacteria, the means of intercepting or interfering with bacterial QS systems evolved by eukaryotes, and the rational design of synthetic antagonists. MediaObjects/216_2006_761_Figa_HTML.jpg Figure Natural products, furanones, from the red alga Delisea pulchra inhibit the quorum sensing regulated production of violacein by Chromobacterium violaceum “The proof of evolution lies in those adaptations that arise from improbable foundations”—Stephen Jay Gould
Keywords:Quorum sensing            N-acylated homoserine lactone  Autoinducer 2  Virulence  Quorum sensing antagonist  Biomimic
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号