首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Design of double emulsions by osmotic pressure tailoring
Authors:Mezzenga Raffaele  Folmer Britta M  Hughes Eric
Institution:Nestle Research Center, Vers-Chez-Les-Blanc, 1000 Lausanne 26, Switzerland. raffaele.mezzenga@rdls.nestle.com
Abstract:A method was developed allowing in situ adjustment of water-in-oil-in-water double emulsion (W/O/W) morphologies by tailoring the osmotic pressure of the water phases. The control of internal droplet size is achieved by altering the chemical potential of the external and internal water phases by dissolving neutral linear polysaccharides of suitable molecular weights. As a consequence of the different chemical potentials in the two aqueous phases, transport of water takes place modifying the initial morphology of the double emulsion. Self-diffusion 1H nuclear magnetic resonance (1H NMR) was used to assess transport mechanisms of water in oil, while a numerical model was developed to predict the swelling/shrinking behavior of W/O/W double emulsions. The model was based on a two-step procedure in which the equilibrium size of a single internal water droplet was first predicted and then the results of the single droplet were extended to the entire double emulsion. The prediction of the equilibrium size of an internal droplet was derived by the equalization of the Laplace pressure with the osmotic pressure difference of the two aqueous phases, as modeled by mean-field theory. The double emulsion equilibrium morphologies were then predicted by upscaling the results of a single drop to the droplet size distribution of the internal W/O emulsion. Good agreement was found between the theoretical predictions and the measurement of double emulsion droplet size distribution. Therefore, the present model constitutes a valuable tool for in situ control of double emulsion morphology and enables new possible applications of these colloidal systems.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号