首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fluorinated polyoxadiazole for high-temperature polymer electrolyte membrane fuel cells
Authors:Dominique Gomes  Suzana P Nunes
Institution:GKSS Research Centre Geesthacht GmbH, Institute of Polymer Research, Max Planck Str. 1, D-21502 Geesthacht, Germany
Abstract:For the first time a fluorinated polyoxadiazole doped with phosphoric acid as a proton-conducting membrane for operation at temperatures above 100 °C and low humidities for fuel cells has been reported. Fluorinated polyoxadiazole with remarkable chemical stability was synthesized. No changes in the molecular weight (about 200,000 g mol−1) can be observed when the polymer is exposed for 19 days to mixtures of sulfuric acid and oleum. Protonated membranes with low doping level (0.34 mol of phosphoric acid per polyoxadiazole unit, 11.6 wt.% H3PO4) had proton conductivity at 120 °C and RH = 100% in the order of magnitude of 10−2 S cm−1. When experiments are conducted at lower external humidity, proton conductivity values drop an order of magnitude. However still a high value of proton conductivity (6 × 10−3 S cm−1) was obtained at 150 °C and with relative humidity of 1%. In an effort to increase polymer doping, nanocomposite with sulfonated silica containing oligomeric fluorinated-based oxadiazole segments has also been prepared. With the addition of functionalized silica not only doping level but also water uptake increased. For the nanocomposite membranes prepared with the functionalized silica higher proton conductivity in all range of temperature up to 120 °C and RH = 100% (in the order of magnitude of 10−3 S cm−1) was observed when compared to the plain membrane (in the order of magnitude of 10−5 S cm−1).
Keywords:Polyoxadiazole  PEMFC  Sulfonated silica  Nanocomposite  Proton conductivity  Fuel cell
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号