首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Superior gas separation performance of dual-layer hollow fiber membranes with an ultrathin dense-selective layer
Authors:Yi Li  Tai-Shung ChungYouchang Xiao
Institution:Department of Chemical and Biomolecular Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
Abstract:A concept demonstration has been made to simultaneously enhance both O2 and CO2 gas permeance and O2/N2 and CO2/CH4 selectivity via intelligently decoupling the effects of elongational and shear rates on dense-selective layer and optimizing spinning conditions in dual-layer hollow fiber fabrication. The dual-layer polyethersulfone hollow fiber membranes developed in this work exhibit an O2/N2 selectivity of 6.96 and an O2 permeance of 4.79 GPU which corresponds to an ultrathin dense-selective layer of 918 Å at room temperature. These hollow fibers also show an impressive CO2/CH4 selectivity of 49.8 in the mixed gas system considering the intrinsic value of only 32 for polyethersulfone dense films. To our best knowledge, this is the first time to achieve such a high CO2/CH4 selectivity without incorporating any material modification. The above gas separation performance demonstrates that the optimization of dual-layer spinning conditions with balanced elongational and shear rates is an effective approach to produce superior hollow fiber membranes for oxygen enrichment and natural gas separation.
Keywords:Dual-layer hollow fiber membrane  Gas separation  Shear rate  Elongational draw ratio  Ultrathin dense-selective layer
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号