首页 | 本学科首页   官方微博 | 高级检索  
     

Shapeable carbon fiber networks with hierarchical porous structure for high-performance Zn–I;batteries
作者姓名:Yulong He  Miaomiao Liu  Song Chen  Jintao Zhang
作者单位:Key Laboratory for Colloid and Interface Chemistry
基金项目:financially supported by the National Natural Science Foundation of China(22175108);the Taishan Scholars Program of Shandong Province(tsqn20161004);Program for Scientific Research Innovation Team of Young Scholar in Colleges and Universities of Shandong Province(2019KJC025);the Youth 1000 Talent Program of China。
摘    要:Aqueous rechargeable zinc-iodine batteries(ZIBs)emerging as a promising energy storage alternative have attracted considerable attention.However,ZIBs still suffer from the severe shuttle effect of polyiodide and poor reversibility,leading to the poor cycling lifetime and potential safety issues.Herein,the assembly of Al-based metal-organic frameworks(Al-MOFs)in the presence of polyacrylonitrile(PAN)via electrospinning technique enables the formation of Al-MOF/PAN fibers.With the subsequent pyrolysis,the hierarchical porous carbon fibers with nitrogen doping(NPCNFs)are prepared for loading iodine.Benefiting from the confinement effect of the highly porous carbon network and the nitrogen doping,the self-supported carbon nanofiber electrode is capable of inhibiting the shuttle effect of polyiodide species.Especially,the in-situ Raman spectroscopy reveals the reversible two-step conversion reaction between iodine and polyiodide,which enables the best cycling stability for over 6,000 cycles with negligible capacity.This work demonstrates an efficient approach to regulating the porous structure and surface properties in the design of advanced iodine electrodes for high-performance ZIBs.

关 键 词:FREE-STANDING  flexibility  hierarchical  pore  structure  NITROGEN-DOPING  zinc-iodine  batteries
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号