New Wannier-Stark localization effects in natural 6H-SiC superlattice |
| |
Authors: | V. I. Sankin P. P. Shkrebii N. S. Savkina N. A. Kuznetsov |
| |
Affiliation: | (1) Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, St. Petersburg, 194021, Russia |
| |
Abstract: | A premature electric breakdown caused by the formation of a strong-field domain under conditions of negative differential conductivity in the 6H-SiC n+-n?-n+ structure optimized for ultrahigh-frequency measurements was observed in the range of electric fields corresponding to the Bloch oscillation regime in a natural 6H-SiC superlattice. The experimental results and ensuing estimates indicate that this domain is mobile and, hence, oscillating, allowing the microwave oscillations that are rapidly damped under conditions of avalanche break-down in a natural 6H-SiC superlattice to be forecasted. Crystal perfectness of a natural 6H-SiC superlattice made it possible to directly observe the Wannier-Stark localization up to electric breakdown, i.e., during the natural crystal lifetime. This was accomplished by the optical photoelectric transformation method in the multiplication regime for a photocurrent created by photons with above-bandgap energy. It was shown that the Wannier-Stark localization, which involves only electrons, occurs in natural 6H-SiC superlattice up to fields that are almost equal to the breakdown field in 6H-SiC, unresponsively to band mixing, i.e., to the fundamental destroyer of the Wannier-Stark localization. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|