Electron spin relaxation of triarylmethyl radicals in fluid solution |
| |
Authors: | Yong L Harbridge J Quine R W Rinard G A Eaton S S Eaton G R Mailer C Barth E Halpern H J |
| |
Affiliation: | Department of Chemistry, University of Denver, Denver, Colorado 80208-2436, USA. |
| |
Abstract: | Electron spin relaxation times of a Nycomed triarylmethyl radical (sym-trityl) in water, 1:1 water:glycerol, and 1:9 water:glycerol were measured at L-band, S-band, and X-band by pulsed EPR methods. In H(2)O solution, T(1) is 17+/-1 micros at X-band at ambient temperature, is nearly independent of microwave frequency, and exhibits little dependence on viscosity. The temperature dependence of T(1) in 1:1 water:glycerol is characteristic of domination by a Raman process between 20 and 80 K. The increased spin-lattice relaxation rates at higher temperatures, including room temperature, are attributed to a local vibrational mode that modulates spin-orbit coupling. In H(2)O solution, T(2) is 11+/-1 micros at X-band, increasing to 13+/-1 micros at L-band. For more viscous solvent mixtures, T(2) is much shorter than T(1) and weakly frequency dependent, which indicates that incomplete motional averaging of hyperfine anisotropy makes a significant contribution to T(2). In water and 1:1 water:glycerol solutions continuous wave EPR linewidths are not relaxation determined, but become relaxation determined in the higher viscosity 1:9 water:glycerol solutions. The Lorentzian component of the 250-MHz linewidths as a function of viscosity is in good agreement with T(2)-determined contributions to the linewidths at higher frequencies. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|