首页 | 本学科首页   官方微博 | 高级检索  
     

矿区复垦农田土壤重金属含量的高光谱反演分析
引用本文:谭琨,叶元元,杜培军,张倩倩. 矿区复垦农田土壤重金属含量的高光谱反演分析[J]. 光谱学与光谱分析, 2014, 34(12): 3317-3322. DOI: 10.3964/j.issn.1000-0593(2014)12-3317-06
作者姓名:谭琨  叶元元  杜培军  张倩倩
作者单位:1. 江苏省资源环境信息工程重点实验室,中国矿业大学,江苏 徐州 221116
2. 卫星测绘技术与应用国家测绘地理信息局重点实验室, 南京大学, 江苏 南京 210023
基金项目:Natural Science Foundation of China(41101423);Fundamental Research Funds for the Central Universities(2014QNA33);China Postdoctoral Science Foundation(2011M500128,2012T50499);Priority Academic Program Development of Jiangsu Higher Education Institutions
摘    要:以矿区复垦农田土壤为研究对象,利用实验室获取的土壤重金属元素砷(As)、锌(Zn)、铜(Cu)、铬(Cr)和铅(Pb)的含量与土壤可见近红外高光谱数据建立重金属元素含量的定量估算模型。为了保证模型预测的精度和稳定性,首先,对原始光谱数据进行平滑处理,并进行光谱变换,即:一阶导数,标准正态变量变换及连续统去除变换;然后,通过相关性分析提取不同变换光谱的特征波段;最后,将最小二乘支持向量机与传统的多元线性回归和偏最小二乘回归方法的结果相比较。研究表明:(1)以不同变换光谱数据建立反演模型均有较好的稳定性并达到一定精度,其中以最小二乘支持向量机方法优于偏最小二乘回归优于多元线性回归模型(除少数几个情况外);(2)从不同光谱变换数据中提取的光谱特征对反演模型结果有一定影响,其中以连续统去除和标准正态变量变换建模结果较好,一阶导数变换稍差。因此,利用高光谱遥感技术来定量估算土壤重金属含量是可行的,而且,必要的光谱预处理对提高估算模型的精度很有帮助。

关 键 词:矿区  高光谱遥感  土壤重金属  光谱预处理  反演模型
收稿时间:2014-01-09

Estimation of Heavy Metal Concentrations in Reclaimed Mining Soils Using Reflectance Spectroscopy
TAN Kun,YE Yuan-yuan,DU Pei-jun,ZHANG Qian-qian. Estimation of Heavy Metal Concentrations in Reclaimed Mining Soils Using Reflectance Spectroscopy[J]. Spectroscopy and Spectral Analysis, 2014, 34(12): 3317-3322. DOI: 10.3964/j.issn.1000-0593(2014)12-3317-06
Authors:TAN Kun  YE Yuan-yuan  DU Pei-jun  ZHANG Qian-qian
Affiliation:1. Jiangsu Key Laboratory of Resources and Environment Information Engineering,China University of Mining and Technology, Xuzhou 221116, China2. Key Laboratory for Satellite Mapping Technology and Applications of State Administration of Surveying, Mapping and Geoinformation of China, Nanjing 210023, China
Abstract:A selection of soil samples from reclaimed mining areas were prepared to establish the quantitative inversion models of the soil heavy metal (As, Zn, Cu, Cr, and Pb) concentrations. The concentrations of the soil heavy metals and the visible and near-infrared spectra of the soil samples were obtained in a darkroom. Firstly, smoothing processing was used to smooth the noise in the original spectra, and the spectral transformation techniques of first derivative (FD), continuum removal (CR), and standard normal variate (SNV) were used to promote the model stability and the accuracy of the prediction. Through correlation analysis, the feature bands of the different transformed spectra were extracted. Finally, three different inversion models were adopted and compared, i.e., traditional multiple linear regression (MLR), partial least squares regression (PLSR), and least squares support vector machines (LS-SVM) modeling. The results indicated that: (1) the stability and accuracy of the inversion models established by the different transformed spectra was high, in which LS-SVM was better than PLSR, and PLSR was better than MLR (except for a few cases); and (2) the spectral features extracted from the different transformed spectra had a certain influence on the inversion model, in which the results based on CR transformation and SNV transformation were better than the FD transformation. Therefore, the quantitative estimation of heavy metal concentrations by the use of reflectance spectroscopy is feasible, and the pre-processing is essential to improve the accuracy of the model.
Keywords:Mining area  Reflectance spectroscopy  Soil heavy metals  Spectral pre-processing  Inversion model
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号