首页 | 本学科首页   官方微博 | 高级检索  
     


Identifiability of Modified Power Series Mixtures via Posterior Means
Authors:Arjun K. Gupta   Truc T. Nguyen   Yinning Wang  Jacek Wesoowski
Affiliation:a Bowling Green State University;b Scheming Plough Research Institute, Kenilworth, New Jersey, 07033;c Wydzia"Image" Matematyki i Nauk Informacyjnych, Politechnika Warszawska, Plac Politechniki 1, 00-661, Warsaw, Poland
Abstract:Problems of specification of discrete bivariate statistical models by a modified power series conditional distribution and a regression function are studied. An identifiability result for a wide class of such mixtures with infinite support is obtained. Also the finite support case within a more specific model is considered. Applications for Poisson, (truncated) geometric, and binomial mixtures are given. From the viewpoint of Bayesian analysis unique determination of the prior by a Bayes estimate of the mean for modified power series mixtures is investigated.
Keywords:modified power series distribution   identifiability of mixtures   posterior mean   regression function   characterization of probability distributions   Poisson mixture   geometric mixture   binomial mixture
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号