首页 | 本学科首页   官方微博 | 高级检索  
     


Inversion of speckle interferometer fringes for hole-drilling residual stress determinations
Authors:D. R. Schmitt  R. W. Hunt
Affiliation:(1) Institute for Geophysical Research, Department of Physics, University of Alberta, T6G 2JI Edmonton, Alberta, Canada
Abstract:Speckle interferometric fringe patterns record stress-relief displacements induced by the drilling of blind-holes into prestressed objects. The quantitative determination of residual stress state from such stress patterns is difficult because of the ambiguity in the order of the observed fringes. The plane stress magnitudes are provided directly from selected fringe positions using a stochastic, iterative least squares minimization approach. The inversion requires prior knowledge of the experimental geometry and an appropriate uniaxial stress-relief displacement basis function derived from three-dimensional finite element calculations. Superpositioning of the rotated and scaled displacement basis functions allows the stress-relief relaxation for any biaxial state of stress to be determined. In this paper, fringe patterns were forward modeled from a large ensemble of calculated biaxial stress-relief displacement fields. Inversion of these noise-free fringe patterns reproduced the biaxial stresses with negligible error. Analysis of more realistic fringe patterns that include speckle noise gave stress magnitude errors that diminished rapidly with the number of selected points to better than 3 percent for 100 points. Sensitivity of the optical method is influenced by a number of factors, but the ensemble of model fringe patterns studied indicates that the stress magnitudes (nomalized with respect to the material's Young's modulus) from 3×10–4 to 10–2 can accurately be determined with visible laser radiation. The method is amenable to automation and can easily be extended to study near surface gradients in the residual stresses or applied to other optical recording techniques such as moiré and phase-shifting interferometry.
Keywords:stress measurement  stress relief  ESPI  interferometry  inversion
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号