首页 | 本学科首页   官方微博 | 高级检索  
     


Deformation of bilayer lipid membranes in bio-inspired materials and systems
Authors:Raffaella De Vita  Iain W. Stewart  Donald J. Leo
Affiliation:1. Department of Mathematics, Livingstone Tower, 26 Richmond Street, Glasgow G1 1XH, UK;2. Center for Intelligent Material Systems and Structures, Department of Mechanical Engineering, Virginia Tech, 310 Durham Hall, Blacksburg, VA, 24061, USA
Abstract:Planar bilayer lipid membranes (BLMs) are currently employed to construct many bio-inspired material systems and structures. In order to characterize the pressure effects on the equilibrium configurations of these biological membranes, a novel continuum model is proposed. The BLM is assumed to be a two-layer Smectic A liquid crystal. The mean orientation of the amphiphilic molecules comprising the membrane is postulated to be perpendicular to the layers and each layer is idealized as a two dimensional liquid. Moreover, the BLM is modeled as a simply supported plate undergoing small deformations. It is subjected to a pressure load that acts perpendicularly to the layers. The equilibrium equations and boundary conditions are derived from the bulk elastic energy for Smectic A liquid crystals as described by de Gennes and Prost (1993) by using variational methods. The resulting fourth-order linear partial differential equation is solved by employing cylindrical functions and the series solution is proved to be convergent. The solution is numerically computed for values of the model parameters that are reported in the literature. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号