首页 | 本学科首页   官方微博 | 高级检索  
     


Ion-specific colloidal aggregation: population balance equations and potential of mean force
Authors:Odriozola Gerardo
Affiliation:Programa de Ingenieri?a Molecular, Instituto Mexicano del Petro?leo, Eje Central La?zaro Ca?rdenas 152, 07730, Me?xico, Distrito Federal, Me?xico. godriozo@imp.mx
Abstract:Recently reported colloidal aggregation data obtained for different monovalent salts (NaCl, NaNO(3), and NaSCN) and at high electrolyte concentrations are matched with the stochastic solutions of the master equation to obtain bond average lifetimes and bond formation probabilities. This was done for a cationic and an anionic system of similar particle size and absolute charge. Following the series Cl(-), NO(3)(-), SCN(-), the parameters obtained from the fitting procedure to the kinetic data suggest: (i) The existence of a potential of mean force (PMF) barrier and an increasing trend for it for both lattices. (ii) An increasing trend for the PMF at contact, for the cationic system, and a practically constant value for the anionic system. (iii) A decreasing trend for the depth of the secondary minimum. This complex behavior is in general supported by Monte Carlo simulations, which are implemented to obtain the PMF of a pair of colloidal particles immersed in the corresponding electrolyte solution. All these findings contrast the Derjaguin, Landau, Verwey, and Overbeek theory predictions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号