首页 | 本学科首页   官方微博 | 高级检索  
     


Enhanced Production of a Thermostable Carbonic Anhydrase in Escherichia coli by Using a Modified NEXT Tag
Authors:In Seong Hwang  Joo Hyeon Kim  Byung Hoon Jo
Affiliation:1.Division of Applied Life Science, Gyeongsang National University, Jinju 52828, Korea;2.Division of Life Science, Gyeongsang National University, Jinju 52828, Korea;3.Division of Life Science and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
Abstract:Carbonic anhydrase (CA) is an ultrafast enzyme that catalyzes the reversible conversion of carbon dioxide (CO2) to bicarbonate. CA is considered to be a green catalyst for enzyme-based CO2 capture and utilization. In particular, the CA of Thermovibrio ammonificans (taCA) has attracted increasing attention as a highly stable enzyme. However, the poor solubility and the low expression level in Escherichia coli have hampered further utilization of taCA. In a recent study, these limitations were partly resolved by using a small solubility-enhancing fusion tag named NEXT, which originates from the N-terminal extension of Hydrogenovibrio marinus CA. In this study, the NEXT tag was engineered by adding small peptides to the N terminus to further increase the production yield of NEXT-tagged taCA. The addition of ng3 peptide (His-Gly-Asn) originating from the N-terminal sequence of Neisseria gonorrhoeae CA improved the expression of NEXT-taCA, while the previously developed translation-enhancing element (TEE) and Ser-Lys-Ile-Lys (SKIK) tag were not effective. The expression test with all 16 codon combinations for the ng3 sequence revealed that the change in translation initiation rate brought about by the change in nucleotide sequence was not the primary determinant for the change in expression level. The modified ng3-NEXT tag may be applied to increase the production yields of various recombinant proteins.
Keywords:recombinant protein   solubility enhancer   NEXT tag   carbonic anhydrase   Thermovibrio ammonificans   CO2 capture
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号