首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Structural Changes in Block Copolymer Solutions under Shear Flow as Determined by Non‐Equilibrium Molecular Dynamics
Authors:Igor Rychkov  Kenichi Yoshikawa
Abstract:Summary: A non‐equilibrium molecular dynamics computer simulation on microsegregated solutions of symmetrical diblock copolymers is reported. As the polymer concentration increases, the system undergoes phase transitions in the following order: body centered cubic (BCC) micelles, hexagonal (HEX) cylinders, gyroid (GYR) bicontinuous networks and lamellae (L), which are the same morphology reported for block copolymer melts. Structural classification is based on the patterns of the anisotropic static structure factor and characteristic 3‐dimensional images. The systems in the BCC micellar (ρσ3 = 0.3) and HEX cylindrical (ρσ3 = 0.4) phases were then subjected to a steady planar shear flow. In weak shear flow, the segregated domains in both systems tend to rearrange into sliding parallel close‐packed layers with their normal in the direction of the shear gradient. At higher shear rates, both systems adopt a perpendicular lamellar structure with the normal along the neutral direction. A further increase in the shear rate results in a decrease in lamellar spacing without any further structural transitions. Two critical shear rate values that correspond to the demarcation of different structural behaviors were found.

Shear‐induced BCC‐LAM phase transition.

Keywords:diblock copolymers  lamellar  molecular dynamics  phase behavior  shear
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号