首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Photoredox-Catalyzed Reduction of Halogenated Arenes in Water by Amphiphilic Polymeric Nanoparticles
Authors:Fabian Eisenreich  Tom H R Kuster  David van Krimpen  Anja R A Palmans
Institution:Laboratory of Macromolecular and Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands; (F.E.); (T.H.R.K.); (D.v.K.)
Abstract:The use of organic photoredox catalysts provides new ways to perform metal-free reactions controlled by light. While these reactions are usually performed in organic media, the application of these catalysts at ambient temperatures in aqueous media is of considerable interest. We here compare the activity of two established organic photoredox catalysts, one based on 10-phenylphenothiazine (PTH) and one based on an acridinium dye (ACR), in the light-activated dehalogenation of aromatic halides in pure water. Both PTH and ACR were covalently attached to amphiphilic polymers that are designed to form polymeric nanoparticles with hydrodynamic diameter DH ranging between 5 and 11 nm in aqueous solution. Due to the hydrophobic side groups that furnish the interior of these nanoparticles after hydrophobic collapse, water-insoluble reagents can gather within the nanoparticles at high local catalyst and substrate concentrations. We evaluated six different amphiphilic polymeric nanoparticles to assess the effect of polymer length, catalyst loading and nature of the catalyst (PTH or ACR) in the dechlorination of a range of aromatic chlorides. In addition, we investigate the selectivity of both catalysts for reducing different types of aryl-halogen bonds present in one molecule, as well as the activity of the catalysts for C-C cross-coupling reactions. We find that all polymer-based catalysts show high activity for the reduction of electron-poor aromatic compounds. For electron-rich compounds, the ACR-based catalyst is more effective than PTH. In the selective dehalogenation reactions, the order of bond stability is C-Cl > C-Br > C-I irrespective of the catalyst applied. All in all, both water-compatible systems show good activity in water, with ACR-based catalysts being slightly more efficient for more resilient substrates.
Keywords:amphiphilic copolymer  photoredox catalysis  polymer assembly  hydrophobic collapse  compartmentalization  dehalogenation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号