首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The formation and decay mechanisms of HCO in the photodissociation of gas phase acetaldehyde
Authors:RJ Gill  WD Johnson  GH Atkinson
Institution:Department of Chemistry, Syracuse University, Syracuse, New York 13210, USA
Abstract:The kinetic mechanism for the formation and decay of HCO(0,0,0) following flashlamp excitation (10 μs pulse width) into the 1A″ → 1A′ absorption transition of gas phase acetaldehyde (0.2 Torr) was examined by time-resolved intracavity laser detection (TRMD) and by phosphorescence lifetime measurements. The HCO radical was found to appear primarily in the vibrationless level reaching a maximum concentration about 250 μs after the excitation of acetaldehyde. The formation rate of HCO(0,0,0) was observed to be insensitive to an order of magnitude change in the number of collisions of excited-state acetaldehyde with either argon, cyclohexane, or the cell wall. Contrastingly, the decay rate of HCO exhibited a strong dependence on the collisional environment. The rate constants for HCO(0,0,0) decay by collisions with acetaldehyde, argon, and cyclohexane and by reaction with O2 were measured by TRILD. The rate constant for O2, quenching of 3A″ phosphorescence was also obtained.The potential for HCO(0,0,0) being either a primary or secondary dissociation product is considered in the formulation of a kinetic mechanism describing both the formation and decay behavior observed. Evidence is presented in support of a mechanism in which (1) HCO(0,0,0) is formed by the thermal reaction between acetyl radicals. CH3CO, and ground-state acetaldehyde after excited-state acetaldehyde undergoes primary dissociation to CH3CO, and (2) HCO(0,0,0) decays principally by collisionally-induced dissociation at the cell wall.
Keywords:Author to whom correspondence should be addressed  
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号