首页 | 本学科首页   官方微博 | 高级检索  
     


Photoelastic determination of stress-intensity factors
Authors:R. H. Marloff  M. M. Leven  T. N. Ringler  R. L. Johnson
Affiliation:1. Westinghouse Research Laboratories, 15235, Pittsburgh, Pa
2. Westinghouse Electric, Bloomington, Ind.
Abstract:The increasing number of analytical and numerical solutions for the crack-tip stress-intensity factor has greatly widened the scope of application of linear elastic fracture-mechanics technology. Experimental verification of a particular solution by elastic stress analysis is often a necessary supplement to provide the criteria for proper application to actual design problems. In this paper, it is shown that the photoelastic technique can be used to obtain rather good estimates of the stress-intensity factor for various specimen geometries and loading conditions. Treated are the following cases: wedge-opening load specimen, several notched rotating-disk configurations, and a notched pressure vessel. A sharp crack is simulated by a relatively narrow notch terminating in a root radius of 0.010 in or less. Stress distributions along the section of symmetry ahead of the notch tip are obtained using three-dimensional frozen-stress photoelasticity. The results are used to determine the stress-intensity factor, cK I , by three methods. Two of these are based on Irwin's expressions for the elastic stress field at the tip cf a crack, and the other is a result of Neuber's hyperbolic-notch analysis. Agreement, with available analytical solutions is good.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号