首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Investigation of dodecylammonium adsorption on mica,albite and quartz surfaces by QM/MM simulation
Authors:Zhen Liu
Institution:National Engineering Research Center for Integrated Utilization of Salt Lake Resources, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
Abstract:The absorption mechanisms of collector and mineral surface structures play important roles in studies of lepidolite flotation. In this work, quantum mechanics (QM) and hybrid quantum mechanics/molecular mechanics (MM) methods were implemented to investigate the flotation mechanisms of lepidolite from muscovite, quartz and albite. The crystal structures, electron density distributions, bonds and the densities of states of lepidolite were calculated and compared with those of muscovite. The adsorption structures and energies of monomer dodecylammonium (DDA) on the three different minerals were also calculated. The headgroup of the DDA cation was found to adsorb on the surface of minerals, with its hydrophobic tail stretching into the vacuum slab, approximately perpendicular to the surface. Simulation results indicate that the purity of fine lepidolite is limited by the existence of muscovite, due to their similarities in surficial structure and properties. Other gangues were found to be removed efficiently with the use of acidic conditions. The results are in good agreement with other experiments. Compared with simple MM simulations, the use of the QM/MM methods to investigate the adsorption on minerals without specific forcefield parameters was concluded to be a more accurate method to attain monomer surfactant–mineral adsorption energies.
Keywords:QM simulation  QM/MM simulation  lithium recourses  mineral flotation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号