首页 | 本学科首页   官方微博 | 高级检索  
     检索      


One-pot synthesis of carbon dots co-doped with N and S: high quantum yield governed by molecular state and fluorescence detection of Ag+
Authors:Wei-jie Ren  Jing-jing Bai  Yan-liang Zhao  Yu-long Wang  Fei Liu
Institution:1. School of Materials Science and Engineering, North University of China, Taiyuan, People’s Republic of China;2. Department of Materials Engineering, Taiyuan Institute of Technology, Taiyuan, People’s Republic of China
Abstract:Fluorescent carbon-based nanoparticles, called chronically as carbon dots (CDs), were synthesised from citric acid (CA) and 2-Aminothiophenol (2AT) via an N and S co-doped hydrothermal method. After a series of micro-structural characterisation, N and S elements could be sufficiently doped by means of the heteroatom in the CDs solution. The as-prepared CDs solution showed blue colour fluorescence with the highest QY of 78.6%, and study on the UV–visible and PL spectra further revealed that the outstanding fluorescence of as-prepared CDs mainly originates from the generated molecular fluorophores instead of the surface state. Owing to the strong fluorescence, the as-prepared CDs can be used as a sensing probe for the detection of Ag+ with high sensitivity and selectivity. However, the changes of fluorescence intensity exhibited the complex nature of the quenching mechanism due to the –SH and –NH2 groups on the fringes of carbonaceous cores or molecular fluorophores to aggregate into another fluorescent cores with the assistance of Ag+ ions, which promises a new approach for efficient detection of Ag+ for the application in industrial pollutants.

This figure shows citric acid (CA) and 2-Aminothiophenol (2AT) via an N and S co-doped hydrothermal method to prepare CDs with blue colour fluorescence and the highest QY of 78.6%. Owing to the excellent fluorescence, the as-prepared CDs can be used as a sensing probe for the detection of Ag+ with high sensitivity and selectivity, and the changes of fluorescence intensity exhibited the complex nature of the quenching mechanism due to the –SH and –NH2 groups on the fringes of carbonaceous cores or molecular fluorophores to aggregate into another fluorescent cores with the assistance of Ag+ ions, which promises a new approach for efficient detection of Ag+ for the application in industrial pollutants.
Keywords:S  N-CDs  molecular fluorophores  higher QYs  Ag+  quenching mechanism
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号