首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dynamic stiffness method for free vibration of an axially moving beam with generalized boundary conditions
Authors:Hu DING  Minhui ZHU  Liqun CHEN
Institution:Shanghai Institute of Applied Mathematics and Mechanics;Shanghai Key Laboratory of Mechanics in Energy Engineering;Department of Mechanics
Abstract:Axially moving beams are often discussed with several classic boundary conditions, such as simply-supported ends, fixed ends, and free ends. Here, axially moving beams with generalized boundary conditions are discussed for the first time. The beam is supported by torsional springs and vertical springs at both ends. By modifying the stiffness of the springs, generalized boundaries can replace those classical boundaries.Dynamic stiffness matrices are, respectively, established for axially moving Timoshenko beams and Euler-Bernoulli(EB) beams with generalized boundaries. In order to verify the applicability of the EB model, the natural frequencies of the axially moving Timoshenko beam and EB beam are compared. Furthermore, the effects of constrained spring stiffness on the vibration frequencies of the axially moving beam are studied. Interestingly, it can be found that the critical speed of the axially moving beam does not change with the vertical spring stiffness. In addition, both the moving speed and elastic boundaries make the Timoshenko beam theory more needed. The validity of the dynamic stiffness method is demonstrated by using numerical simulation.
Keywords:axially moving beam  natural frequency  Timoshenko beam model  dynamic stiffness matrix  generalized boundary condition
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号