Experimental determination of the potential energy curves of the I(3/2u) and I(3/2g) states of Kr+ 2 |
| |
Authors: | A. WÜEST P. RUPPER F. MERKT |
| |
Affiliation: | Laboratorium für Physikalische Chemie , ETH Zürich, CH-8093, Zurich, Switzerland |
| |
Abstract: | The I(3/2u) and I(3/2g) states of Kr+ 2 have been investigated by pulsed-field-ionization zero-kinetic-energy (PFI-ZEKE) photoelectron spectroscopy following (2 + 1′) resonance-enhanced multiphoton excitation via the 0+ g Rydberg state located below the Kr?([4p]55p[1/2]0) + Kr(1S0) dissociation limit of Kr2. From the positions of a large number of vibrational bands in the spectra of the 84Kr2 and 84Kr-86Kr isotopomers, the adiabatic ionization potentials (IP(I(3/2u)) = 112672.4 ± 0.8cm?1, IP(I(3/2g)) = 111 395.0 ± 1.4cm?1), the dissociation energies (D + 0(I(3/2u)) = 368.8 ± 2.0cm?1, D + 0(I(3/2g)) = 1646.2 ± 2.3cm?1) and vibrational constants for both ionic states have been determined. Potential energy curves have been extracted which perfectly reproduce all experimental observations and are accurate over a wide range of energies and internuclear distances. The equilibrium internuclear distances (R + e(I(3/2u)) = 4.11 ± 0.04 Å, R + e(I(3/2g)) = 3.35 ± 0.10 Å) have been derived by comparing the intensity distribution in the PFI-ZEKE photoelectron spectra to calculated Franck-Condon factors. The dissociation energy of the I(3/2g) state and the equilibrium internuclear distance of the I(3/2u) state differ markedly from previously reported values. |
| |
Keywords: | |
|
|