Theoretical investigation on kinetics and thermochemistry of reaction of CHF2CF2OCH2CF3 with OH radicals and global warming potentials |
| |
Authors: | Makroni Lily |
| |
Affiliation: | Department of Chemistry, Centre For Advanced Studies in Chemistry, North-Eastern Hill University, Shillong, India |
| |
Abstract: | Theoretical investigation has been carried out on the mechanism, kinetics and thermochemistry of the gas-phase reactions between CHF2CF2OCH2CF3 and OH radical using a new hybrid density functional M06-2X/6-31+G(d,p) and G2(MP2)//M06-2X/6-31+G(d,p) methods. The most stable conformer of CHF2CF2OCH2CF3 is considered in our study and the possible H-abstraction reaction channels are identified. Each reaction channel shows an indirect H-abstraction reaction mechanism via the formation of pre-reactive complex. The rate coefficients are determined for the first time over a wide range of temperature 250–1000 K. At 298 K, the calculated total rate coefficient of kOH = 1.01×10?14 cm3 molecule?1 s?1 is in good agreement with the experimental results. The heats of formation for CHF2CF2OCH2CF3 and CF2CF2OCH2CF3 and CHF2CF2OCHCF3 radicals are estimated to be -1739.25, -1512.93 and -1523.94 kJ mol?1, respectively. The bond dissociation energies of the two C-H bonds are C(-H)F2CF2OCH2CF3: 423.34 kJ mol?1 and CHF2CF2OC(-H)HCF3: 411.87 kJ mol?1. The atmospheric lifetime of CHF2CF2OCH2CF3 is estimated to be around 4.5 years and the 100-year time horizon global warming potentials of CHF2CF2OCH2CF3 relative to CO2 is estimated to be 601. |
| |
Keywords: | CHF2CF2OCH2CF3 OH radical M06-2X rate coefficient atmospheric lifetime global warming potentials |
|
|