首页 | 本学科首页   官方微博 | 高级检索  
     


Variational transition state theory with multidimensional tunnelling and kinetic isotope effects in the reactions of C2H6, C2H5D and C2D6 with .CCl3 to produce CHCl3 and CDCl3
Authors:Seyedeh Leila Hashemi Dashtaki
Affiliation:Department of Chemistry, Yasouj University, Yasouj, Iran
Abstract:ABSTRACT

Rate constants for the reactions of C2H6, C2H5D and C2D6 with .CCl3. for the production of CHCl3 and CDCl3 (k1, k2, k3 and k4) were computed using variational transition state theory coupled with hybrid-meta density functional theory (MPWB1K) over the temperature range of 200–2900 K. The ground-state vibrational adiabatic potential was plotted for all channels. Small- and large-curvature tunnelling were determined to include quantum effects in the calculation of rate constants. Harmonic vibrational frequencies along the reaction path were calculated in curvilinear coordinates with scaled frequencies. Anharmonicity was included in the lowest-frequency torsion. The position of formation and dissociation of bonds was specified using the variation in harmonic vibrational frequencies along the reaction path. Representative tunnelling energy and the thermally averaged transmission probability at 298 K (P(E)exp?( ? ΔE/RT)) were determined for the reactions in which tunnelling is important. The kinetic isotope effect was used to calculate the considerable contributions of tunnelling and vibration. The expressions for rate constants were determined using nonlinear least-square fitting over the temperature range of 200–2900 K.
Keywords:Kinetics  potential energy surface  rate constant  tunnelling  kinetic isotope effect
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号