首页 | 本学科首页   官方微博 | 高级检索  
     


Symmetry enforced gauge invariance of nuclear magnetic shielding constants
Authors:Andrzej Okniński  Andrzej J. Sadlej
Affiliation:Institute of Organic Chemistry, Polish Academy of Sciences , Warsaw 42, Poland
Abstract:E.S.R. experiments performed at 1·3 K by optical detection are reported for the photo-excited triplet state of palladiumporphin in a single crystal of n-octane, and the observation of a level anticrossing signal is described.

In the crystal the orbital degeneracy of the 3 E u state of the free molecule is lifted by the crystal field and in n-octane the energy difference between the two orbital components |x> and |y> is found to be 58 ± 2 cm-1. The spinorbit coupling (SOC) and the orbital Zeeman interaction couple the triplet manifolds of |x> and |y>, and for a proper understanding of the magnetic properties of these states it is necessary to work in the basis of the six spin-orbit functions deriving from the 3 E u state of the free molecule. It is shown that either of the two triplet states can be described by an effective spin hamiltonian of the common form and expressions for the zero-field parameters D and E and the principal values of the g tensor are given. The experimental values of the parameters in the lowest triplet state are D = -24·38 ± 0·03 GHz, |E| = 320 ± 60 MHz, g = 1·677 ± 0·001 and g = 1·989 ± 0·002. The matrix element of the SOC connecting the |x> and |y> triplet manifolds amounts to qZ = 15 ± 3 cm-1 and the vibronic orbital angular momentum (in units of ?) in the 3 E u state of the free molecule to qΛ = 1·5 ± 0·3. A tentative value of 0·63 for the orbital reduction factor q is obtained by comparison with a theoretical estimate of Λ. The value of q is indicative of weak Jahn-Teller coupling.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号