首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An electrostatic interaction correction for improved crystal density prediction
Authors:Peter Politzer  Jorge Martinez  Jane S Murray  Monica C Concha  Alejandro Toro-Labbé
Institution:1. Department of Chemistry , University of New Orleans , New Orleans, LA 70148, USA;2. Department of Chemistry , Cleveland State University , Cleveland, OH 44115, USA ppolitze@uno.edu;4. Southeastern Pacific Research Institute for Advanced Technologies (SEPARI) , Universidad Técnica Federico Santa Maria, Av. Espa?a 1680, Edificio T., Valparaiso, Chile;5. Department of Chemistry , Cleveland State University , Cleveland, OH 44115, USA;6. Department of Chemistry , University of New Orleans , New Orleans, LA 70148, USA;7. Laboratorio de Química Teórica Computacional (QTC) and CIMAT, Facultad de Química , Pontificia Universidad Católica de Chile, Vicu?a Mackenna 4860, Casilla 306, Correo 22, Santiago, Chile
Abstract:Recent work by others has shown that the densities of C,H,N,O molecular crystals are, in many instances, given quite well by the formula M/Vm, in which M is the molecular mass and Vm is the volume of the isolated gas phase molecule that is enclosed by the 0.001 au contour of its electronic density. About 41% of the predictions were in error by less than 0.030 g/cm3, and 63% by less than 0.050 g/cm3. However, this leaves more than one-third of the compounds with errors greater than 0.050 g/cm3, or in some instances, 0.100 g/cm3. This may indicate that intermolecular interactions within the crystal are not being adequately taken into account in these cases. Accordingly, the effectiveness of including a second term that reflects the strengths, variabilities and degree of balance of the positive and negative electrostatic potentials computed on the surfaces of the isolated molecules, has been included. The database was selected such that half of the densities predicted by M/Vm had errors larger than 0.050 g/cm3. The introduction of the electrostatic interaction correction produced a marked improvement. Overall, 78% of the predictions are within 0.050 g/cm3 of experiment, with 50% within 0.030 g/cm3. Among those that originally all had errors larger than 0.050 g/cm3, 67% are now less. The reasons for the better performance of the dual-variable formula are analysed.
Keywords:crystal density  energetic compounds  molecular volume  electrostatic interaction correction  electrostatic potential
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号