首页 | 本学科首页   官方微博 | 高级检索  
     


Experimental and theoretical study of the reaction of the ethynyl radical with nitrous oxide, C2H + N2O
Authors:Nguyen Vinh Son  Elsamra Rehab M Ibrahim  Peeters Jozef  Carl Shaun A  Nguyen Minh Tho
Affiliation:Department of Chemistry, University of Leuven, Leuven, Belgium.
Abstract:We investigated the rate constants and reaction mechanism of the gas phase reaction between the ethynyl radical and nitrous oxide (C(2)H + N(2)O) using both experimental methods and electronic structure calculations. A pulsed-laser photolysis/chemiluminescence technique was used to determine the absolute rate coefficient over the temperature range 570 K to 836 K. In this experimental temperature range, the measured temperature dependence of the overall rate constants can be expressed as: k(T) (C(2)H + N(2)O) = 2.93 × 10(-11) exp((-4000 ± 1100) K/T) cm(3) s(-1) (95% statistical confidence). Portions of the C(2)H + N(2)O potential energy surface (PES), containing low-energy pathways, were constructed using the composite G3B3 method. A multi-step reaction route leading to the products HCCO + N(2) is clearly preferred. The high selectivity between product channels favouring N(2) formation occurs very early. The pathway corresponds to the addition of the terminal C atom of C(2)H to the terminal N atom of N(2)O. Refined calculations using the coupled-cluster theory whose electronic energies were extrapolated to the complete basis set limit CCSD(T)/CBS led to an energy barrier of 6.0 kcal mol(-1) for the entrance channel. The overall rate constant was also determined by application of transition-state theory and Rice-Ramsperger-Kassel-Marcus (RRKM) statistical analyses to the PES. The computed rate constants have similar temperature dependence to the experimental values, though were somewhat lower.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号