首页 | 本学科首页   官方微博 | 高级检索  
     


Exciton phase transitions in semiconductor quantum wells with disc-shaped electrode
Authors:Chernyuk A A  Sugakov V I  Tomylko V V
Affiliation:Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine.
Abstract:Phase transitions in a system of indirect excitons in semiconductor double quantum wells are studied for a set-up when one of the electrodes is of finite size and, in particular, has the shape of a disc. At voltage a region under the rim of the disc is created where excitons have lower energy, thus providing a macroscopic trap attractive for excitons while being repulsive for charged particles. The theory of the formation of patterns of the excitonic condensed phase under the disc is built based on the assumption of the existence of the inter-exciton range where the interaction between them is attractive. The finite value of the exciton lifetime is taken into account serving as a limiting factor for the size of the islands of the condensed phase. The calculations reveal complex restructuring of the patterns of the spatial distribution of exciton density with increasing pumping intensity: from the structureless gaseous phase to separate islands of the condensed phase within the gaseous phase, then to islands of the gaseous phase in the bulk of the condensed phase and finally to the continuous condensed phase.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号