首页 | 本学科首页   官方微博 | 高级检索  
     


Monte Carlo algorithms for simulating systems with adiabatic separation of electronic and nuclear degrees of freedom
Authors:Bin Chen  J. Ilja Siepmann
Affiliation:(1) Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455-0431, USA, US
Abstract:Two Monte Carlo algorithms for the adiabatic sampling of nuclear and electronic degrees of freedom are introduced. In these algorithms the electronic degrees of freedom are subject to a secondary low-temperature thermostat in close analogy to the extended Lagrangian formalism used in molecular dynamics simulations. Numerical tests are carried out for two model systems of coupled harmonic oscillators, and for two more realistic systems: the water dimer and bulk liquid water. A statistical-mechanical discussion of the partition function for systems with adiabatic separation of electronic and nuclear degrees of freedom, but with finite electronic temperature, is presented. The theoretical analysis shows that the algorithms satisfy the adiabatic limit using suitable choices of the electronic temperature, T elec, the number of electronic moves, R elec, and the maximum step sizes used for displacements of nuclear coordinates. For quadratic coupling of the nuclear and electronic degrees of freedom, the electronic phase-space volume is independent of the nuclear coordinates. In this case, the sampling of the nuclear coordinate phase-space recovers the correct Born-Oppenheimer limit independent of T elec, but each electronic degree of freedom contributes an offset of 0.5k B Telec (with T elec ′−1=T −1+T elec −1) to the average total energy. For nonquadratic coupling, satisfactory sampling of the nuclear coordinate phase-space requires a low T elec to limit the ratio of the electronic phase-space volumes at T elec and Telec to be close to unity. Received: 22 December 1998 / Accepted: 5 January 1999 / Published online: 21 June 1999
Keywords:: Monte Carlo algorithms  Adiabatic sampling  Polarizable force fields
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号