首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Sensitive detection of Penicillin-G chemical using SnO2.YbO nanomaterials by electrochemical approach
Institution:1. Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, PO Box 80203, Saudi Arabia;2. Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah 21589, PO Box 80203, Saudi Arabia;3. Department of Pharmacy, Faculty of Life and Earth Sciences, Jagannath University, Dhaka 1100, Bangladesh
Abstract:In this approach, binary tin oxide doped ytterbium oxide nanosheets (SnO2.YbO NSs) were synthesized in an alkaline phase using under low-temperature facile hydrothermal technique. Traditional methods such as UV–Visible spectroscopy, Fourier Transform Infra-Red Spectroscopy (FTIR), Powder X-ray diffraction (XRD), Field Emission Scanning Microscopy (FESEM) equipped with X-ray electron dispersive spectroscopy (XEDS), and X-ray photoelectron spectroscopy (XPS) were used to fully characterize the prepared SnO2.YbO NSs. Fabrication of a thin-coating with doped NSs onto GCE by using 5% nafion conducting binder resulted in development of a selective and enzyme-free penicillin-G sensor probe. A reliable I-V technique was used to perform electrochemical performances of good sensitivity, large LDR, and long-term stability of the desired Penicillin-G sensor (SnO2.YbO NSs/GCE/Nf). With a wide range of Penicillin-G concentration, the proposed calibration plot is noticed good linearity (R2 = 0.9830). Sensitivity and LOD of the sensor were calculated as 24.75 μAμM-1cm?2 and 30.0 pM, respectively based on S/N = 3 formula. Real samples (Human and rabbit serum, milk, and red-sea water) were analyzed with the fabricated SnO2.YbO NSs/GCE/Nf sensor probe and the findings results were acceptable and satisfactory. This approach could be a noble development of in-situ Penicillin-G sensor based on binary SnO2.YbO NSs/GCE/Nf by reliable I-V technique for important sensing applications including beneficial doped nanomaterials and nano-technological system.
Keywords:Penicillin-G  Sensor  I-V method  Sensitivity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号