首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Diffusioosmotic flows in slit nanochannels
Authors:Qian Shizhi  Das Biswajit  Luo Xiaobing
Institution:Department of Mechanical Engineering, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154-4027, USA. shizhi.qian@unlv.edu
Abstract:Diffusioosmotic flows of electrolyte solutions in slit nanochannels with homogeneous surface charges induced by electrolyte concentration gradients in the absence of externally applied pressure gradients and potential differences are investigated theoretically. A continuum mathematical model consisting of the strongly coupled Nernst-Planck equations for the ionic species' concentrations, the Poisson equation for the electric potential in the electrolyte solution, and the Navier-Stokes equations for the flow field is numerically solved simultaneously. The induced diffusioosmotic flow through the nanochannel is computed as functions of the externally imposed concentration gradient, the concentration of the electrolyte solution, and the surface charge density along the walls of the nanochannel. With the externally applied electrolyte concentration gradient, a strongly spatially dependent electric field and pressure gradient are induced within the nanochannel that, in turn, generate a spatially dependent diffusioosmotic flow. The diffusioosmotic flow is opposite to the applied concentration gradient for a relatively low bulk electrolyte concentration. However, the electrolyte solution flows from one end of the nanochannel with a higher electrolyte concentration to the other end with a lower electrolyte concentration when the bulk electrolyte concentration is relatively high. There is an optimal concentration gradient under which the flow rate attains the maximum. The induced flow is enhanced with the increase in the fixed surface charge along the wall of the nanochannel for a relatively low bulk electrolyte concentration.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号