首页 | 本学科首页   官方微博 | 高级检索  
     


Sensitivity considerations in polarization transfer and filtering using dipole-dipole couplings: implications for biomineral systems
Authors:Christiansen Sean C  Hedin Niklas  Epping Jan D  Janicke Michael T  del Amo Yolanda  Demarest Mark  Brzezinski Mark  Chmelka Bradley F
Affiliation:Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA.
Abstract:The robustness and sensitivities of different polarization-transfer methods that exploit heteronuclear dipole-dipole couplings are compared for a series of heterogeneous solid systems, including polycrystalline tetrakis(trimethylsilyl)silane (TKS), adamantane, a physical mixture of doubly (13)C,(15)N-enriched and singly (13)C-enriched polycrystalline glycine, and a powder sample of siliceous marine diatoms, Thalossiosira pseudonana. The methods were analyzed according to their respective frequency-matching spectra or resultant signal intensities. For a series of (13)C{(1)H} cross-polarization experiments, adiabatic passage Hartmann-Hahn cross-polarization (APHH-CP) was shown to have several advantages over other methods, including Hartmann-Hahn cross-polarization (HHCP), variable-amplitude cross-polarization (VACP), and ramped-amplitude cross-polarization (RACP). For X-Y systems, such as (13)C{(15)N}, high and comparable sensitivities were obtained by using APHH-CP with Lee-Goldburg decoupling or by using the transferred-echo double resonance (TEDOR) experiment. The findings were applied to multinuclear (1)H, (13)C, (15)N, and (29)Si CP MAS characterization of a powder diatom sample, a challenging inorganic-organic hybrid solid that places high demands on NMR signal sensitivity.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号