Nanoporous carbon nanotubes synthesized through confined hydrogen-bonding self-assembly |
| |
Authors: | Rodriguez Adrian T Chen Min Chen Zhu Brinker C Jeffrey Fan Hongyou |
| |
Affiliation: | Department of Chemical and Nuclear Engineering and UNM/NSF Center for Micro-Engineered Materials, The University of New Mexico, Albuquerque, New Mexico 87131, USA. |
| |
Abstract: | We report a simple and direct synthetic method for the preparation of nanoporous carbon nanotubes with larger pores (>10 nm) on the tube wall. The method combines the use of anodic aluminum oxide (AAO) as a template for the tube diameter and block copolymer/carbohydrates self-assembly within thin films confined inside AAO pore channels to form nanopores. It involves coating the AAO inner pore channel surface with block copolymer (polystyrene-co-poly(vinylpyridine)) and carbohydrates in dimethylformamide (DMF) solution. Drying of DMF induced microphase separation of PS-PVP and formation of ordered PS and PVP/carbohydrate domains. Within the coating, the carbohydrates stay specifically only in the pyridine domains surrounding PS domains due to the hydrogen bonding between carbohydrates and pyridine blocks. After carbonization at high temperature (>460 degrees C) in argon, PS was removed, forming the nanopores and carbohydrates, and PVP was carbonized, forming the framework of nanoporous carbon tubes within AAO channels. Removal of AAO led to the formation of individual monodisperse nanoporous carbon nanotubes with a tube wall of approximately 16 nm. The ease with which these nanoporous carbon nanotubes can be fabricated, and the ability to tune tube nanostructures and surface chemistry through the choice of block copolymers used and carbonization temperature, should facilitate investigations of their scope for practical applications. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|