首页 | 本学科首页   官方微博 | 高级检索  
     


Time–temperature superposition method for predicting the permanence of paper by extrapolating accelerated ageing data to ambient conditions
Authors:H.-Z. Ding  Z. D. Wang
Affiliation:(1) School of Electrical and Electronic Engineering, The University of Manchester, Manchester, M60 1QD, UK
Abstract:In this paper we present a time-temperature superposition method for predicting the permanence of paper by extrapolating accelerated paper ageing data to ambient conditions. The presented method includes a test for the presence of shift factors to superpose all of the raw accelerated ageing data over the temperature range studied to obtain a master curve, a numerical fit of the master curve for producing a master equation representing the kinetics of paper degradation, a critical examination of applying Arrhenius equation for explaining the relationship between the empirically determined shift factors and the accelerated ageing temperature, and a verification of the Arrhenius activation energy extrapolation assumption. Unlike the usual approach that extrapolates the Arrhenius relationship between lifetime and temperature, without corroborating evidence, to ambient temperatures, we test the Arrhenius activation energy extrapolation assumption by determining the influence of acidity on cellulose hydrolysis reactions, and have found that detection and identification of the acid-sensitive linkages in cellulose substances is an ultra-sensitive and reliable method to measure degradation of cellulose and paper in what is normally the extrapolation region (ambient temperatures). Taking the examples of natural ageing data in literature from 18 bleached kraft dry-lap pulps for 22 years under ambient conditions and three handsheet samples for 22 years under controlled conditions, comparison of the predictions with natural ageing results has been addressed.
Keywords:Accelerated tests  Ageing tests  Cellulose degradation  Time–  temperature superposition  Kinetics  Durability  Paper properties
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号