首页 | 本学科首页   官方微博 | 高级检索  
     


A proton and optic dual-control molecular switch based on photochromic diarylethene bearing a rhodamine unit
Authors:Weijun LiuShouzhi Pu  Shiqiang CuiGang Liu  Congbin Fan
Affiliation:Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
Abstract:A novel fluorescent switch based on rhodamine B and photochromic diarylethene, 1-[2-methyl-5-(4-methoxylphenyl)-3-thienyl]-2-[2-methyl-5-(4-rhodamine B hydrazine-Schiff base-phenyl)-3-thienyl]perfluorocyclopentene (1), has been successfully synthesized through the condensation of rhodamine B hydrazine and 1-[2-methyl-5-(4-methoxylphenyl)-3-thienyl]-2-[2-methyl-5-(4-formylphenyl)-3-thienyl]perfluorocyclopentene. UV and FL measurements reveal that the compound exhibits good photochromic properties responsive to proton and optic dual inputs. Upon irradiation with 297 nm light, the colorless solution of compound 1 turns blue, while the blue solution becomes colorless after irradiated with visible light (λ>450 nm). Furthermore, upon an addition of H+, the fluorescence resonance energy transfers from the rhodamine unit (FRET donor) to the closed-ring diarylethene unit (FRET acceptor), although no energy transfer occurs when the diarylethene is in the open-ring form. The emission intensity of the rhodamine can be modulated with proton and UV/vis light and molecular-level signal communication has been constructed, indicating high potentials of the compound in molecular switches or naked eye recognition systems.
Keywords:Photochromism   Diarylethene   Rhodamine   Molecular switch
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号