首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Kinetics of the gas-phase isomerization of 1,trans-3,trans-5-heptatriene into the cis-5-isomer catalyzed by Nitric Oxide and the stabilization energy in the pentadienyl radical
Authors:Kurt W Egger  M Jola
Abstract:The kinetics of the nitric oxide catalyzed, homogeneous, gas-phase isomerization of 1,trans-3,trans-5-heptatriene have been studied for temperatures ranging between 130°C and 241°C. The very clean reaction involves exclusive geometrical isomerization about the 5,6-π-bond. The observed rate constants for \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm NO} + trans - {\rm 3,}trans{\rm - 5}\stackrel{1}{\rightarrow}trans - 3,cis - 5 + {\rm NO} $\end{document}equation image can be represented (with standard errors) by log k1 = (7.18 ± 0.06) – (16.75 ± 0.12)/θ, where θ = 2.303 R T in kcal/mole. The consecutive-step reaction mechanism involves addition of NO to the double bond (Ka, b = ka/kb), followed by rotation of the 5,6-C? C bond in the adduct radical (kc.) Analysis of the observed activation parameters shows, that kc is rate-controlling and consequently k1 = kcKa, b. Estimates of kc and Ka, b lead to a value of k1 in good agreement with experiment. Comparing our data with those previously obtained for the similar 1,3-pentadiene system results in a value for the extra stabilization energy generated in the 1,3-heptadienyl radical of 18.5 ± 1.7 kcal/mole. This value is discussed in view of comparable data in the literature.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号