Effects of mean flow convection,quadrupole sources and vortex shedding on airfoil overall sound pressure level |
| |
Authors: | William R. Wolf,Joã o L.F. Azevedo,Sanjiva K. Lele |
| |
Affiliation: | 1. University of Campinas, Campinas, SP 13083-860, Brazil;2. Instituto de Aeronáutica e Espaço, São José dos Campos, SP 12228-903, Brazil;3. Stanford University, Stanford, CA 94305-4035, USA |
| |
Abstract: | This paper presents a further analysis of results of airfoil self-noise prediction obtained in the previous work using large eddy simulation and acoustic analogy. The physical mechanisms responsible for airfoil noise generation in the aerodynamic flows analyzed are a combination of turbulent and laminar boundary layers, as well as vortex shedding (VS) originated due to trailing edge bluntness. The primary interest here consists of evaluating the effects of mean flow convection, quadrupole sources and vortex shedding tonal noise on the overall sound pressure level (OASPL) of a NACA0012 airfoil at low and moderate freestream Mach numbers. The overall sound pressure level is the measured quantity which eventually would be the main concern in terms of noise generation for aircraft and wind energy companies, and regulating agencies. The Reynolds number based on the airfoil chord is fixed at Rec=408,000 for all flow configurations studied. The results demonstrate that, for moderate Mach numbers, mean flow effects and quadrupole sources considerably increase OASPL and, therefore, should be taken into account in the acoustic prediction. For a low Mach number flow with vortex shedding, it is observed that OASPL is higher when laminar boundary layer separation is the VS driving mechanism compared to trailing edge bluntness. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|