首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Integration of self-consistent polycrystal plasticity with dislocation density based hardening laws within an implicit finite element framework: Application to low-symmetry metals
Authors:Marko Knezevic  Rodney J McCabe  Ricardo A Lebensohn  Carlos N Tomé  Cheng Liu  Manuel L Lovato  Bogdan Mihaila
Institution:1. Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA;2. Department of Mechanical Engineering, University of New Hampshire, Durham, NH 03824, USA
Abstract:We present an implementation of the viscoplastic self-consistent (VPSC) polycrystalline model in an implicit finite element (FE) framework, which accounts for a dislocation-based hardening law for multiple slip and twinning modes at the micro-scale grain level. The model is applied to simulate the macro-scale mechanical response of a highly anisotropic low-symmetry (orthorhombic) crystal structure. In this approach, a finite element integration point represents a polycrystalline material point and the meso-scale mechanical response is obtained by the mean-field VPSC homogenization scheme. We demonstrate the accuracy of the FE-VPSC model by analyzing the mechanical response and microstructure evolution of α-uranium samples under simple compression/tension and four-point bending tests. Predictions of the FE-VPSC simulations compare favorably with experimental measurements of geometrical changes and microstructure evolution. Specifically, the model captures accurately the tension–compression asymmetry of the material associated with twinning, as well as the rigidity of the material response along the hard-to-deform crystallographic orientations.
Keywords:Uranium  Constitutive modeling  Finite element method  Texture  EBSD
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号