首页 | 本学科首页   官方微博 | 高级检索  
     


Quantum Phase Transitions in Conventional Matrix Product Systems
Authors:Jing-Min Zhu  Fei Huang  Yan Chang
Affiliation:1.College of Optoelectronics Technology,Chengdu University of Information Technology,Chengdu,China;2.College of communication engineering,Chengdu University of Information Technology,Chengdu,China;3.College of information security engineering,Chengdu University of Information Technology,Chengdu,China
Abstract:For matrix product states(MPSs) of one-dimensional spin-(frac {1}{2}) chains, we investigate a new kind of conventional quantum phase transition(QPT). We find that the system has two different ferromagnetic phases; on the line of the two ferromagnetic phases coexisting equally, the system in the thermodynamic limit is in an isolated mediate-coupling state described by a paramagnetic state and is in the same state as the renormalization group fixed point state, the expectation values of the physical quantities are discontinuous, and any two spin blocks of the system have the same geometry quantum discord(GQD) within the range of open interval (0,0.25) and the same classical correlation(CC) within the range of open interval (0,0.75) compared to any phase having no any kind of correlation. We not only realize the control of QPTs but also realize the control of quantum correlation of quantum many-body systems on the critical line by adjusting the environment parameters, which may have potential application in quantum information fields and is helpful to comprehensively and deeply understand the quantum correlation, and the organization and structure of quantum correlation especially for long-range quantum correlation of quantum many-body systems.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号